Green Matrices Associated with Generalized Linear Polyominoes
نویسندگان
چکیده
A Polyomino is an edge–connected union of cells in the planar square lattice. Here we consider generalized linear polyominoes; that is, the polyominoes supported by a n × 2 lattice. In this paper, we obtain the Green function and the Kirchhoff index of a generalized linear polyomino as a perturbation of a 2n–path by adding weighted edges between opposite vertices. This approach deeply links generalized linear polyomino Green functions with the inverse M–matrix problem, and especially with the so–called Green matrices.
منابع مشابه
The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملEnumeration of generalized polyominoes
As a generalization of polyominoes we consider edge-to-edge connected nonoverlapping unions of regular k-gons. For n ≤ 4 we determine formulas for the number ak(n) of generalized polyominoes consisting of n regular k-gons. Additionally we give a table of the numbers ak(n) for small k and n obtained by computer enumeration. We finish with some open problems for k-polyominoes.
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کامل